MANET extensions to ns2

Andrés Lagar Cavilla
andreslcQcs.toronto.edu

Department of Computer Science
University of Toronto

This is a set of software modules providing additional models for the simula-
tion of multihop mobile ad hoc networks (MANETS) in the ns2 simulator. We
provide implementations of the CM and Shell mobility models, and the AF and
LOS radio propagation models described in [1]. We also provide instrumen-
tation tools for the ns2 simulator, as well as template simulation scripts and
results parsers.

The software presented here builds on the Monarch ns2 wireless exten-
sions [2], as well as on some pre-existing mobility and radio propagation models,
such as Random WayPoint [3], Free Space and Two-Ray Ground. We assume
that the reader is familiar with the concept of MANETS, with the models afore-
mentioned, and with the internals of ns2. All the software is based on version
2.26 of the ns2 distribution.

This documentation is split in two sections. The first part is a walk-through
around the provided software, explaining how to conduct a simulation similar
to the ones we carried out in [1]; we have bundled in the tarball the necessary
scenario files. In the second part we go deeper into the fundamentals of each
model and the particular implementation at hand.

The software is provided “AS IS”, i.e. we do not take any responsibility
whatsoever on any damage it may cause to your system or data. As long as you
give proper credit, you can use the software freely for whatever legal purposes
you may wish, and you can also modify it at will.

1 The Walk-Through

1.1 Mobility Pattern Generation

If you are reading this, then you have successfully decompressed the tarball,
and are now wondering where to start among all those directories. The first
thing you want to do is go to the setdest directory and build the four flavors
of setdest we have there. You need to edit Makefile to have the NSDIR variable
point to the root of your ns2 source tree. Once you’ve done that, make should
do its job with no problems.

A typical simulation scenario in [1] was a network of 40 nodes moving at
3 m/s during 1200 s, following the CM mobility model, with no pause time in
an area of 88 m by 113 m, and with a sensitivity threshold of -81 dBm assuming
AF propagation. To randomly generate a mobility pattern according to those
specifications, you have to type

./setdest_cm_af -n 40 -r -81 -p 0 -s 3 -t 1200 -x 88 -y 113
-f bahen_cm_graph.txt -g bahen_af_pic.pnm -d bahen_af_defs.txt
> mobility-40-cmaf-81.1

This will take a while, and the mobility pattern will be written to the
mobility-40-cmaf-81.1 file. You may want to generate 4 more mobility
pattern files with the same specifications, labeled mobility-40-cmaf-81.2 to
mobility-40-cmaf-81.5. This way you can run 5 different experiments and
average the results.

setdest does not only generate a mobility pattern, but also computes some
topology metrics derived from that pattern, and appends them as comments at
the end of the output file. The next step is then to go to the parsers directory
and compile the Java program MobilityParser by typing
javac MobilityParser.java. Then you can move the resulting .class file to
where the mobility pattern files are located, and run java MobilityParser
mobility-40-cmaf-81 5. This will average the mobility metrics in each of the
5 files you have generated, and dump the results to mobility-40-cmaf-81.csv.
This is a comma-separated-values file, readable by Matlab and any spreadsheet
program. This csv file in particular will contain the values for three metrics:

Link Changes: a global count of how many times the connectivity between
each pair of nodes is interrupted and restored.

Neighbor Density: the average number of peers within connectivity range for
any given node at any given time.

Optimal Path Length: the average length in hops of the optimal path be-
tween every pair of nodes for which a path actually exists, at any given
time.

Now you have five mobility pattern files for a given scenario and the cor-
responding topology metric. You can create mobility patterns for roughly the
same scenario, but now with FS propagation (in this case we’ll specify a con-
nectivity range of 35 m):

./setdest_cm -n 40 -r 35 -p 0 -s 3 -t 1200 -x 88 -y 113
-f bahen_cm_graph.txt > mobility-40-cm-35.1

This will take quite less time. You can also create five of these and average
their topology metrics.

1.2 Generating a traffic pattern
In the cbr dir you'll find cbrgen.tcl, a CBR traffic pattern script generator.

To generate a traffic pattern suitable for the scenarios we’ve been working with
above, type

ns cbrgen.tcl —nn 40 -mc 20 -rate 4 -size 64 -seed <seed> > cbr-40

where seed is some random floating point number between zero and one.

1.3 Integrating the propagation models to ns2

In the propagation directory you’ll find 4 files with the implementation for ns2
of the Attenuation Factor and Line of Sight propagation models:
propagation_af.cc and .h, and propagation_los.cc and .h. Move this files
to the mobile directory in your ns2 source tree, and add them to the list of object
files in the ns2 Makefile: somewhere around line 216 in your ns2 Makefile you
should be able to add the following line

mobile/propagation_af.o mobile/propagation_los.o \

Then recompile the whole simulator. You have now added both propagation
models to ns2. However, before recompiling ns2 you may want to read the
following section.

1.4 Integrating our instrumentation extensions to ns2

We have developed a set of instrumentation extensions to ns2. These extensions
track down the values of several performance metrics during a MANET simu-
lation, and pour the final values to stdout once the simulation is finished. The
metrics reported are:

packets sent

packets received

packet delivery rate

packet delivery latency: in miliseconds
routing packets transmitted

routing bytes transmitted

normalized routing load: The ratio of routing packets transmitted to appli-
cation-layer packets delivered.

Routing optimality: expressed as the number of additional hops a packet
traversed with respect to the optimal route at the time of arrival.

You may want to give a try to our instrumentation extensions. In such a
case, go to the instrumentation directory and copy each file there to its proper
place in the ns2 source tree (Always do backups!!!): cmu-trace.cc to trace,
god.cc and god.h to mobile, dsdv.cc to dsdv, and packet.h to common. Note
that the modified modules are based on version 2.26 of ns2. Now is a good time
to recompile the whole simulator from scratch.

1.5 Running the simulations

Now you have all the components you need to run a simulation such as the ones
we ran in [1]. In the script directory you’ll find a tcl script
(wireless_af_inst.tcl) properly set up to run a simulation using AF pro-
pagation. But first some preparations (all paths relative to the location of the
wireless_af_inst.tcl script):

e Create a mobility directory and move the mobility pattern files there.
e Create a cbr directory and move the traffic pattern file there.

e Copy (or link) the bahen_af_defs.txt and bahen_af_pic.pnn file from
the setdest directory to where wireless_af_inst.tcl is.

Now you're ready to go. Type

ns wireless_af_inst.tcl -nn 40 -range -81 -proto dsdv -mobility cmaf
-option 1 > results-40-81-dsdv-cmaf.1

To run the simulations using the other mobility patterns you generated type
for example

ns wireless_af_inst.tcl -nn 40 -range -81 -proto dsdv -mobility cmaf
-option 3 > results-40-81-dsdv-cmaf.3

And to run the same scenario but with dsr routing type

ns wireless_af_inst.tcl -nn 40 -range -81 -proto dsr -mobility cmaf
-option 1 > results-40-81-dsr-cmaf.1

Note: If you chose not to use our instrumentation extensions then you can use
instead the script wireless_af.tcl with the same parameters. Note that now
you don’t need to pipe stdout to any file. The following section is of no interest
to those who chose not to use our instrumentation extensions.

1.6 Parsing the results

Now you have five result files generated by our instrumentation extensions,
results-40-81-dsdv-cmaf.1l to results-40-81-dsdv-cmaf.5 (you may also
have five similar files for dsr routing). If you want to average the results for the
five runs, go to the parsers directory and compile OutputParser. java. Then
copy the resulting .class file to where your results file are and type

java OutputParser results-40-81-dsdv-cmaf 5 1200 64

This will generate results-40-81-dsdv-cmaf.csv a (hopefully) nicely la-
belled and easily understandable digest of the simulation results.

2 Detailed Description
2.1 Starting with AutoCAD

which is, by the way, a registered trademark. In order to work with your instance
of any of the models we provide, you will need to get hold of the AutoCAD
blueprint of your floor plan, and convert it to a picture, preferably in png format.
There’s plenty of programs out there that can do that; one example is the
opendwg utilities (www.opendwg.org).

2.2 AF propagation

Attenuation Factor is a radio propagation model that obeys the following equa-
tion:

Pap(r,m1,....,my) = Py(r,) — 10nlog, (%) -y 7 m;- PF,

where P, is the power at some nearby reference distance r,, n is the path loss
exponent that determines the rate at which power decreases with the distance
r, m; is the number of times the dominant ray (the straight-line trajectory)
between transmitter and receiver collides with an obstacle of material type 4,
1 <i <o, and PF; is the attenuation due to obstacles of type 7. In a nutshell,
in AF propagation the dominant ray is used to count the number of obstacles
(walls) between transmitter and receiver. Each wall material is tagged with
a different attenuation factor, and the summation of the attenuation factors,
plus a traditional log-distance path-loss component, constitutes the total signal
attenuation with respect to the reference power P.

The AF propagation model is a module that can be integrated to ns2, as
we have explained in subsection 1.3. The AF model needs a list of materials
and their corresponding attenuation factors, as well as a means to detect inter-
sections with obstacles. For the latter, we use a pnm picture of the floor plan,
derived from the original AutoCAD file, in which each material has a different
color. pnm is an easily-readable graphic format provided in the netpbm graph-
ics package. If you have this package installed in your Linux distribution (you
probably do), just run pngtopnm to convert a png to a pnm. You'll notice pnm’s
are bulky, however they compress fairly well. The bahen_af_pic.pnn file in the
setdest directory is the one we used for our project.

To run the AF model we need to load the pnm picture and a text file specify-
ing the color and attenuation factor of each material that should be considered,
as well as the remaining AF parameters. The file bahen_af_defs.txt that you
can find in the setdest directory will serve as an explanation:

-31.4627 1.96651 7
L7727 255 255 255
L7727 224 224 224
.479 128 128 128
.479 160 160 160
.11104 160 160 255
.11104 128 128 255
.50076 64 64 64

D W WNN DD

where the first value is Py, the second is n, the third is ¢ (the number
of different materials), and the correspondingly following seven lines are the
attenuation factor for each material and the rgb specification of the color of the
material in the pnm picture. Inside your ns simulation script, you should set
up the AF propagation command with the following commands:

set prop [new Propagation/AF]
$prop topography $topo

$prop load-defs <definitions file>
$prop load-pic <pnm picture>

where topo is a properly setup topography object with the simulation area
dimensions. You can find these lines in the any of the scripts in the scripts
directory.

2.2.1 Line-Of-Sight Propagation

The LOS propagation model is derived from AF. It simply prevents propagation
once an obstacle in the direct path between transmitter and receiver is found;
otherwise, it falls back to conventional Two-Ray Ground propagation. It there-
fore uses the same pnm picture as AF to detect obstacles. However, it does not
need a definitions file; the model assumes by convention that anything that is
not black is an obstacle. The script command sequence is thus the following:

set prop [new Propagation/L0S]
$prop topography $topo
$prop load-pic <pnm picture>

2.3 CM Mobility and TOOL

In Constrained Mobility, node movement is constrained according to the edges
of a graph we call a Mobility Graph. A Mobility Graph is drawn on top of a
floor plan, and its structure will constrain node movement in such a way as to
mimic human movement. Nodes choose destinations from the set of leaf vertices
of the graph — located in offices or conference rooms — and move to their new
destination over the shortest path on the mobility graph, which involves going
through the door, walking on a hallway, and so on.

TOOL is originally a multi-purpose program written by Tom Hart. We
have tailored it for the generation of CM mobility graphs. Its entirely written
in Java, so the first thing to do is move to the TOOL directory and compile
everything: javac *.java should suffice. You then execute TOOL with the
following command line:

java CoverGenerator <picture> <width in meters> <height in meters>
<width in pixels> <height in pixels>

where you provide a png picture of your floor plan, the width and height of
the floor plan in meters, and the width and height of the picture in pixels.

TOOL’s online help is pretty self explanatory, so we will not elaborate much.
Anyway, here’s is short list of what you need to do

1. Select the option “File/New Canvas”.

2. In the “File/Options” box, unmark “Enforce Ordered Set” and set “Ex-
port Format” to “Graph Adjacency Matrix”

3. In your canvas window, press “a”’ to add vertices. You can drag them
around to their proper place.

4. To draw an edge, choose the two end-point vertices (they turn red) and

[P

press “c”. If you made a mistake, undo it by pressing “d”.

5. To specify that a vertex is suitable as a node destination, choose it and

press “e”. You can undo this by pressing “e” again. Once the vertex is no
longer selected, it should be blue.

6. Once you are done, save your work using “File/Save Canvas”.

7. And finally, export your work usgin “File/Export”. We will use this second
file in the following stage.

To serve as an example, you can run

java CoverGenerator bahen.pnm 88 113 1464 1920

and after loading bahen_cm_canvas.txt you’'ll be able to export
bahen_cm_graph.txt.

2.4 Setdest

In the setdest directory you’ll find a set of variants of the original setdest
program written by the Monarch group [2]. This program randomly generates a
RWP mobility scenario and dumps it to stdout in the form of a TCL script that
ns2 will later use. The arguments passed are the number of nodes, simulation
time, width and height of the simulation area, pause time and node speed. It is
the assumption that you're familiar with this program.

2.4.1 setdest_rwp

setdest_rwp is quite similar to the original setdest, but it takes an additional
range argument: the radius in meters of the connectivity range of a single node,
for free space or two-ray ground propagation. It uses this parameter to produce
the three topology metrics we described in section 1.1. The following is an
example of how to run setdest_rwp to get a rwp mobility pattern for 20 nodes
moving at 3 m/s max speed in a 88 by 113 m rectangle during 1200 seconds.
Transmission range is set to 25 m, and pause time is set to zero

./setdest_rwp -n 20 -r 25 -p 0 -s 3 -t 1200 -x 88 -y 113
> test.rwp

2.4.2 setdest_shell

setdest_shell generates a shell mobility pattern assuming also free space pro-
pagation. Shell mobility is a middle-ground between CM and RWP: it considers
outer walls but not inner walls. Node mobility is therefore constrained to happen
within the shell outlined by the outer perimeter of the floor plan under consi-
deration. Functionality of setdest_shell is identical to that of setdest_rwp.
However, we need an additional parameter specifying a picture of the floor plan
in pnm format.

As in AF, the pnm picture is meant to depict the floor plan, for the purpose
of distinguishing its boundaries, in this case. By convention, the exterior of the
floor plan (those places outside of the shell, where you don’t want your nodes
to go to) has to be in red color. Look at bahen_af_pic.pnm for an example. To
generate a shell mobility pattern with the remaining parameters the same as in
the previous example, just type

./setdest_shell -n 20 -r 256 -p 0 -s 3 -t 1200 -x 88 -y 113
-f bahen_af_pic.pnm > test.shell

2.4.3 setdest_cm

setdest_cm generates a CM mobility pattern assuming free space radio pro-
pagation. It has the same parameters as setdest_rwp, but you also need to
specify where the CM mobility graph is. This is the file you generated using
TOOL. A simple example:

./setdest_shell -n 20 -r 25 -p 0 -s 3 -t 1200 -x 88 -y 113
-f bahen_cm_graph.txt > test.cm

2.4.4 setdest_cm_af

The final and most complex variant is that which generates a CM mobility
pattern assuming AF propagation. We need to load the proper AF specification,
as you would do in an ns2 simulation, in order to be able to compute the topology
metrics. Apart from the CM graph, we need to load the pnm picture, as well as
the definitions text file detailing the AF model parameters. The following will
exemplify:

/setdest_cm_af -n 20 -r -71 -p 0 -s 3 -t 1200 -x 88 -y 113
-f bahen_cm_graph.txt -g bahen_af_pic.pnm -d bahen_af_defs.txt
> test.cmaf

Note that the range is now specified in as the sensitivity threshold that you
will use in the simulation, in units of dBm.

2.5 Instrumentation

We also provide our own instrumentation mechanism to record performance
metrics. It consists of a set of modified ns modules which you can find in
the instrumentation directory. The mechanism is simple: a set of counters
and tables are initialized inside the GOD (Global Operations Director) object,
and every time an event is written to the trace file, the cmu-trace module
communicates the event to GOD, where the proper counter/table is updated.
By the end of the simulation, counter contents in GOD are poured to stdout.

Besides modifying the cmu-trace.cc, god.cc and god.h files, we also need
to customize a few other modules. packet.h is changed to add a new timestamp
field to the common packet header; this new timestamp will be used to record
packet delivery latency. Since DSDV routing packets are usually not recorded as
trace events, we modified dsdv.cc to directly tell GOD whenever it broadcasts
a routing packet. Moreover, we include in the new version of dsdv.cc a fix for
a well-known infinite loop bug.

If you want to use our instrumentation tools, just replace the modules in
the correct places of the ns2 source tree and recompile. Note that our modified
code is based on version 2.26. Also, two commands need to be added to your
simulation script file (after the creation of the god_ object):

$god_ set-rp $opt(proto)
$ns_ at $opt(stop) ¢ ‘$god_ dump-counters’’

2.6 Parsers

We provide two small Javal programs in the parsers directory. The idea is to
automate the averaging of the results for a series of experiments targeting the
same scenario, but with different randomly generated mobility patterns.

For example, assume that results-cmaf-20-dsr-91.1 represents the per-
formance results (obtained through our instrumentation extensions) of the first
run of an experiment using CM mobility, AF propagation with a sensitivity
threshold of -91 dBm, DSR routing and 20 nodes. Furthermore,
results-cmaf-20-dsr-91.2, .3, etc... are the files containing the results for
subsequent runs of the same experimental configuration. Executing

java OutputParser results-cmaf-20-dsr-91 5 1200 64

will average the results of 5 of those files — Note that we require different runs
to be identified by a different number after a period at the end of the file name:
.1, .2, etc... — and write the averages to

results-cmaf-20-dsr-91.csv, the comma-separated-values files readable by
Matlab and most spreadsheet programs. A csv output example is provided in the
parsers directory. The third and four arguments passed to OutputParser are
simulation time and packet size, respectively, used to compute overall through-
put.

While OutputParser allows us to average the performance metrics for se-
veral runs, obtained through our instrumentation extensions, MobilityParser
is applied to the mobility pattern files generated by our different flavors of
setdest to average the topology metrics: link changes, neighbor densities and
path length. The syntax is similar:

java MobilityParser mobility-cmaf-20-91 5

will average mobility-cmaf-20-91.1 to mobility-cmaf-20-91.5, and out-
put the results to mobility-cmaf-20-91.csv. Once again, a csv example for
mobility averaging is provided in the parsers directory.

2.7 CBR

Traffic patterns are modeled after Constant Bit Rate sources. We slightly mo-
dified the original cbrgen.tcl script and placed it in the cbr directory. The
new syntax is

ns cbrgen.tcl -nn <nodes> -mc <sources> -rate <pkts/second>
-size <pktsize> -seed <seed> > <destination file>

where the optional seed is a floating point number between zero and one.
This will pour to stdout a tcl script that ns2 will interpret in order to set up
the traffic pattern.

1Yes, we could have used Python or something else.

2.8 Scripts

We finally provide two template script (wireless_af_inst.tcl and
wireless_af.tcl) used to run a ns2 simulation using AF propagation with or
without our instrumentation extensions. The scripts are properly documented,
and you can cut&paste whatever parts you need into your own scripts.

References

[1] A. Lagar Cavilla, G. S. Baron, T. E. Hart, L. Litty, and E. de Lara, “Sim-
plified simulation models for indoor manet evaluation are not robust,” in
Proceedings of the First IEEE Conference on Sensor and Ad-Hoc Commu-
nications and Networks, Oct. 2004.

[2] The Monarch Project. [Online]. Available: http://www.monarch.cs.rice.edu

[3] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva, “A perfor-
mance comparison of multi-hop wireless ad hoc network routing protocols,”
in Mobile Computing and Networking, 1998, pp. 85-97.

10

