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Abstract
Cloud computing promises to provide researchers with the abil-
ity to perform parallel computations using large pools of virtual
machines (VMs), without facing the burden of owning or main-
taining physical infrastructure. However, with ease of access to
hundreds of VMs, comes also an increased management burden.
Cloud users today must manually instantiate, configure and main-
tain the virtual hosts in their cluster. They must learn new cloud
APIs that are not germane to the problem of parallel process-
ing. Those APIs usually take several minutes to perform their VM-
management tasks, forcing users to keep VMs idling and pay for
unused processing time, rather than shut VMs down and power
them on as needed. Furthermore, users must still configure their
cluster management framework to launch their parallel jobs.

In this paper we show that all this management pain is unnec-
essary. We show how to combine a cloud API – SnowFlock – and a
parallel processing framework – MPI – to truly realize the potential
of the cloud. SnowFlock allows users to fork VMs as if they were
processes, occupying in sub-second time multiple physical hosts.
We exploit the synergy between this paradigm and MPI’s job man-
agement to completely hide all details of cloud management from
the user. Maintaining a single VM and starting unmodified appli-
cations with familiar MPI commands, a user can instantaneously
leverage hundreds of processors to perform a parallel computa-
tion. Besides making use of cloud resources trivial, we also elim-
inate the cost of idling – VMs exist only for as long as they are
involved in computation.

1. Introduction
The availability of cheap multicore hardware has allowed
the deployment of large clusters suitable for use via Internet
connections. This has led to the emergence of commodity
computing services and the cloud paradigm, provided by
services such as Amazon’s Elastic Cloud (EC2) [2]. In the
cloud model, users buy processing time and run their virtual
machines (VMs) in the large computing facilities of the
provider, scaling their applications without the need for an
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investment in physical hardware ownership or maintenance.
These large computing facilities are ideally suited to the

execution of massively parallel applications. A common
mechanism for implementing such parallel processing ap-
plications is the Message Passing Interface (MPI) standard.
MPI provides an API to simplify the message passing be-
tween application processing nodes, and provides a process
management environment to orchestrate the launching of
application processes across hosts. However, in a cloud en-
vironment, users need not only worry about MPI. They must
also set up their cluster of VMs by managing the instantia-
tion, configuration and maintenance of the cluster members.
To do so, they must learn cloud APIs [3] that are unrelated
to the problems of parallel processing. Start-up of VMs in
cloud or cluster environments can take “minutes” [2], which
generally forces users to rarely shut down VMs and keep
them idle instead. Idling of VMs incurs a financial cost and
may potentially degrade the quality of service experienced
by the user due to consolidation. The management burden
of a parallel framework is thus compounded with that of
administering the cloud resources being used.

SnowFlock [22] allows virtual clusters to be instantiated
in an impromptu manner on a physical cluster by cloning
a single previously-started master VM. An application that
has been designed to work in the SnowFlock environment
can expand its processing footprint in sub-second time, and
then reduce it again when the computation is finished. Snow-
Flock thus ensures that no excess resources are wasted, mak-
ing the use of commodity computing resources much more
economical. Further, SnowFlock provides stateful cloning:
since all VMs are essentially identical to the master, con-
figuration and application state are automatically inherited.
This greatly simplifies any management burden, since users
need only maintain a single VM, and can rely on state-
ful cloning to swiftly propagate the configuration to other
VMs as needed. Finally, SnowFlock presents a low runtime
overhead, making it practical for processor-intensive parallel
tasks.

This paper shows that SnowFlock can be coupled with a
parallel processing framework like MPI to make use of cloud
computing resources trivial. Users of this system only need
to maintain a single VM, and install their usual applications
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• sf_request_ticket (n): Requests an allocation for n clones. Re-
turns a ticket describing an allocation for m ≤ n clones.
• sf_clone(ticket): Clones, using the allocation in the ticket. Re-
turns the clone ID, 0 ≤ ID ≤ m.
• sf_exit(): For children (1 ≤ ID ≤ m), terminates the child.
• sf_join(ticket): For the parent (ID = 0), blocks until all children
in the ticket reach their sf_exit call. At that point all children are
terminated and the ticket is discarded.
• sf_kill(ticket): Parent only, immediately terminates all children
in ticket and discards the ticket.

Table 1: The SnowFlock VM Fork API

without any modifications. SnowFlock-MPI lets users lever-
age the MPI commands that they are experienced with to
instantaneously and efficiently expand the computing foot-
print to the number of desired processors. Our SnowFlock-
MPI implementation is a modification of MPICH Version
1.2.7, an MPI implementation from the Argonne National
Laboratory [4], which is fully compatible with the origi-
nal MPICH implementation and supports code written in C,
C++, and Fortran. SnowFlock and the SnowFlock-MPI li-
brary described here are open-source software freely avail-
able at our project site [30].

We present performance results for several common ap-
plications. While our experiments reveal a runtime overhead
due to the centralized nature of our MPI management archi-
tecture, we believe this overhead to be acceptable when com-
pared to the ease of use of cloud resources our paradigm in-
troduces. Notwithstanding, we propose solutions to remove
this inefficiency.

The paper opens with a description of SnowFlock, fol-
lowed by a description of MPI and our changes to it. We then
describe the applications used for our tests, and discuss the
evaluation results. Before concluding the paper, we discuss
future directions for MPI enabled by the SnowFlock model,
and review related work.

2. SnowFlock
This section gives a brief description of SnowFlock’s API
and implementation. For more details, please see [22].
SnowFlock implements a VM fork primitive. Once a call
to VM fork succeeds, a number of identical VMs will have
been instantiated on several different physical hosts. Forking
of VMs is swift, parallel, and scalable. Each VM is added to
the same virtual network connecting all clones to their par-
ent. VMs are differentiated by a clone ID, a positive integer
that VMs can use to determine their role in a computation –
the parent’s ID is always zero. Each VM has its IP address
automatically reconfigured as a function of the ID. VMs can
communicate with their parent and siblings, but not with
VMs from other users or with external hosts, unless explicit
rules are added to a NAT and firewall engine presiding over
the virtual network.

The VM fork primitive is exposed through a simple

API, which we illustrate in Table 1. A VM must call
sf_request_ticket to obtain an allocation ticket before cloning.
This ticket indicates how many VMs can actually be created,
and is a function of cluster management policies such as
quotas and billing. A ticket also indicates on which physical
hosts cloned VMs will be instantiated, although that infor-
mation is hidden to VMs. The sf_clone call operates with
the ticket as input, forks the VM and returns the clone ID.
Upon return of the clone call, a VM will have been added
to the virtual network with its unique IP address, and can
perform network communications with its peers. The master
VM can use the sf_join or sf_kill operations to synchronize
with its children and eliminate them.

SnowFlock is implemented by extending the Xen [5] vir-
tual machine monitor (VMM) version 3.0.3. The API is pro-
vided to applications via C and Python bindings, and through
shell scripts. The API implementation posts requests to a
shared memory interface (the XenStore). A SnowFlock dae-
mon executes in domain 0 – Xen’s administrative and privi-
leged VM – and listens for API calls on the shared memory
interface. There is one SnowFlock daemon per cluster host;
the daemons form a distributed system that orchestrates the
task of cloning VMs. Figure 1 illustrates SnowFlock’s VM
cloning mechanism.

SnowFlock achieves swift, parallel, and scalable VM
cloning by attacking the problem of large transmissions of
VM state. Unlike techniques such as live migration [9] that
fully and eagerly replicate an entire VM, SnowFlock trans-
mits state on-demand. Swift cloning is achieved by syn-
thesizing a VM descriptor, a small file composed of VM
metadata, virtual processor (vcpu) registers, and the contents
of some special pages of memory, including the pages that
make up the page tables used by the x86 MMU hardware. A
VM descriptor is produced in milliseconds, has a size typi-
cally under a megabyte, and is distributed via multicast to all
hosts where a cloned VM will execute. The VM descriptor
is used to spawn a cloned VM that will have most of its disk
and memory image empty. The entire process occurs in less
than a second, and is independent of the number of hosts on
which VMs will be cloned: SnowFlock can clone a VM to
32 hosts in 800 milliseconds.

SnowFlock provides memtap, a memory-on-demand mech-
anism that fetches pages of a cloned VM’s memory as they
are being accessed. On-demand replication of memory pre-
vents large transmissions of VM state, but could adversely
affect performance. SnowFlock has two optimizations that
keep runtime overhead low for most workloads. First, the
guest kernel page allocator is augmented to detect and pre-
vent fetches of pages that will be immediately overwritten.
This results in substantial savings of memory transfers by
exploiting the common case of clones creating new applica-
tion state, which tends to overwrite the contents of little-used
or free memory pages. Second, we use mcdist, a subsystem
that provides optimistic multicast distribution for pages of



Figure 1: SnowFlock VM Replication Architecture. Condensed
VM descriptors are distributed to cluster hosts to spawn VM repli-
cas. Memtap populates the VM replica state on demand, using mul-
ticast distribution. Avoidance heuristics reduce the number of nec-
essary fetches.

memory. While delivery of a page of memory is guaranteed
to the requester, it is also simultaneously multicast “for free”
to all other clones. By exploiting locality patterns among
clones performing the same task on different data, multicast
effectively prefetches memory to most hosts, and leverages
parallelism in the network hardware.

SnowFlock provides the same techniques (fetching state
on demand, heuristics and multicast) for the cloning of a
VM’s disk state. Cloned VMs are involved, in general, in
tight computational loops, and thus rarely formulate disk
requests that exceed their buffer caches. Our techniques have
thus proven appropriate for these workloads.

3. Integrating MPI and SnowFlock
This section describes the MPI architecture and the changes
that were required for it to work in the SnowFlock environ-
ment. We based our work on the MPICH [4] library devel-
oped by the Argonne National Laboratory.

3.1 Standard MPI Architecture
The MPICH architecture requires the user to set up a man-
agement daemon (the mpd process) on each node which will
be used to run MPI applications. These management dae-
mons are persistent, and hence require the machine (virtual
or otherwise) upon which they run to remain active. They
form a one-way ring topology through which communica-
tion can take place. When an application is to be run, the
mpirun program is used to initiate the execution as follows:

mpirun -np num_procs program arguments

where num_procs is the desired number of MPI processes
or workers. mpirun attaches to the mpd process on the lo-
cal node, causing it to communicate with the rest of the ring

and start up an application-specific mpdman process on each
node to be used. There is one mpdman process per worker
requested, and the program and arguments passed to mpirun
are propagated through the mpd ring to each mpdman pro-
cess. The mpdman processes themselves connect forming a
secondary one-way ring topology, one that only exists for
the length of this specific execution. The mpdman processes
then each start an application process. One important as-
sumption is that the application binary is available in the
same path in all nodes.

Multiple mpdman and application processes can be
spawned per node. For instance, if a user requests 32 pro-
cesses and there are only 16 nodes, two mpdman/application
process pairs will be spawned per node. When spawning the
application binary, an mpdman sets up a number of envi-
ronment variables which will be used by the MPI library
upon application process start up. These variables include:
the MPI rank, an integral number uniquely identifying each
worker in the MPI computation; the file descriptors for a
loopback network connection that the application process
can use to talk to its managing mpdman; and the file de-
scriptors for three loopback connections which are used to
propagate the stdin, stdout, and stderr streams through the
mpdman ring back to the mpirun process.

Application processes link against the MPI library and
are expected to call immediately upon startup MPI_Init
to parse the environment variables set up by mpdman.
The application process can then perform calls such as
MPI_Comm_rank to determine its rank, or MPI_Comm_size
to find out about the total number of workers spawned.
Throughout execution, workers transmit information to one
another via the MPI_Send and MPI_Recv calls. Workers talk
to one another using point-to-point connections, and identify
each other by rank; workers have no knowledge of network
coordinates. A connection between two workers is brokered
by their mpdman managers communicating over their sepa-
rate ring. The mpdman managers are also involved in tasks
such as broadcast (barrier or fence) operations, application
termination, etc. This architecture is depicted in figure 2.
Within a node, the mpdman processes use UNIX signals to
notify local application processes that they have been sent
information which they must process.

3.2 Adapting MPI to SnowFlock
Given that SnowFlock allows the impromptu creation and
subsequent merging of a virtual cluster of VMs, the standard
MPI architecture described above does not fit well within
this model, as it requires long-lived management processes
on a cluster with a well-known configuration. We modified
MPICH to allow the mpirun process to control the creation
of an appropriately-sized cluster for an application run using
SnowFlock’s API. A user provides exactly the same com-
mand invocation as he would do with standard MPI. The
num_procs argument passed to mpirun is used to determine
the number of VM clones to be created. Because SnowFlock
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Figure 2: Standard MPI Architecture. The standard MPI archi-
tecture involves a persistent one-way ring of management processes
(mpd), and another one-way ring that manages each application run
(mpdman). Control messages travel through the rings, while work-
ers exchange application messages point-to-point.

can replicate multiprocessor VMs, mpirun performs a two
stage forking process: first, it uses VM fork to span multi-
ple hosts with VM replicas, and then it uses process fork to
span the processors allocated to each VM. For example, a
computation requiring 64 processes could use 16 VMs with
4 processors each.

Because the IP addresses of the cloned VMs are com-
puted deterministically out of clone IDs, communication
between workers can be established without the need for
mpdman-like brokering. Following our example, once the
two levels of replication have been completed there will be
64 mpirun processes spread across 16 VMs. All processes
know the location of the master and fellow mpirun copies.
All copies connect to four sockets set up by the master
mpirun process before cloning. These sockets are used to
allow redirection of standard input, output and error, and
for exchanging management and control messages. In ef-
fect, the connection between each application process and its
mpdman is replaced by a connection to the master mpirun
process, hence making the SnowFlock mpirun a hybrid of
mpirun and mpdman.

Once all of the cloned mpirun processes have established
their connections to the master copy, they set up environ-
ment variables much like mpdman would do, and they use
execvp to start executing the desired application. The appli-
cation processes use standard MPI routines such as MPI_Init,
MPI_Send, etc, to perform their tasks. As in traditional MPI,
application messages are transmitted point-to-point. How-
ever, instead of sending MPI management messages (bro-
kering new connections, synchronizing around barriers, etc)
to an mpdman ring, application processes send them to the
master mpirun, which forwards them to the correct applica-
tion process. The MPICH library has been modified to use

TCP/IP-based signaling instead of UNIX signals to inform
MPI processes of the arrival of MPI management messages.
This is because we have eliminated the local mpdman pro-
cess which would normally pass this information to an ap-
plication and alert it via a UNIX signal. While our version
of MPICH can be built to work with UNIX signals, this re-
quires the management process to rsh to the target node in
order to issue the UNIX signal. This is inefficient and is thus
only supported for compatibility reasons, in the case of a
closed-source binary that cannot even be relinked. We do
not recommend using our MPICH library in this manner.

At the end of the application run, the SnowFlock MPI
management process calls the SnowFlock API to eliminate
all worker VMs and shrink the processing footprint back
to a single VM. Figure 3 illustrates the architecture of the
SnowFlock MPI implementation: the management process
is a hub, with the application processes sitting at the end of
connecting spokes.
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Figure 3: SnowFlock MPI Architecture. The SnowFlock MPI
implementation just has a single MPI management process on the
master VM, which runs only as long as the application processes
and handles all their management traffic.

3.3 Discussion
Our SnowFlock-MPI implementation replaces the mainte-
nance of a ring of management daemons by on-the-fly ex-
pansion of the footprint to the desired number of processes.
One drawback of our current implementation is the central-
ized nature of the management infrastructure: all nodes send
management (not application) messages to a master process.

We have noticed that this centralized design presents scal-
ability issues. In section 4 we show how this manifests in our
experimental evaluation. Our immediate future work plan
is thus to move to a distributed management infrastructure,
which will reduce the number of open sockets on any one
node and the amount of work required to handle them. This
can be enabled by SnowFlock, since VM IP addresses are
known deterministically, which also allows one to determin-
istically compute ports on which each process will listen for
new connections. Brokerage of MPI connections can thus be
made fully distributed and point-to-point, removing most of
the burden on the centralized orchestrator. Management will
still be necessary for fence operations and termination.



4. Evaluation
This section details our testing: the environment and applica-
tions used. SnowFlock-MPI testing employed 32 machines
each with four processors. In each experiment a master 4-
vcpu SMP VM was cloned to 31 additional copies occupy-
ing all available processors. We compared our results to an
optimal “zero-cost fork” baseline. Zero-cost results are ob-
tained with VMs previously allocated, with no cloning or
state-fetching overhead, and in an idle state, ready to pro-
cess the jobs allotted to them. As the name implies, zero-cost
results are overly optimistic and not representative of cloud
computing environments, in which aggressive consolidation
of VMs is the norm and instantiation times are far from in-
stantaneous. The zero-cost VMs are vanilla Xen 3.0.3 do-
mains configured identically to SnowFlock VMs in terms of
kernel version, disk contents, RAM, and number of CPUs.

4.1 Machine Environment
All of our experiments were carried out on a cluster of 32
Dell PowerEdge 1950 blade servers. Each host had 4 GB of
RAM, 4 Intel Xeon 3.2 GHz cores, and a Broadcom NetX-
treme II BCM5708 gigabit NIC. All machines were running
the SnowFlock prototype based on Xen 3.0.3, with paravir-
tualized Linux 2.6.16.29 running as the OS for both host
and guest VMs. All VMs were configured with 640 MB of
RAM. All machines were connected to two daisy-chained
Dell PowerConnect 5324 gigabit switches. All results re-
ported are the means of five or more runs, and error bars
depict standard deviations.

4.2 MPI Applications
Here we describe the applications used for evaluating our
SnowFlock implementation of MPI. We tested our MPI im-
plementation with five applications representative of the do-
mains of bioinformatics, rendering, physics, and chemistry.

4.2.1 MPI BLAST
BLAST [1], the Basic Local Alignment and Search Tool, is
a popular computational biology tool offered as an Internet
service [28], and is demanding of both computational and
I/O resources. MPI BLAST [11] uses MPI to distribute work
across multiple nodes. We performed MPI BLAST searches
using 500 short protein fragments from the sea squirt Ciona
savignyi to query a 512MB portion of the National Center
for Biotechnology Information (NCBI) non-redundant pro-
tein database.

4.2.2 ClustalW
ClustalW [20] generates a multiple alignment of a collection
of protein or DNA sequences and is also offered as a web
service [15]. ClustalW uses a greedy heuristic requiring pre-
computation of comparisons between all pairs of sequences
and a final multiple alignment stage, which requires a high
degree of synchronization. ClustalW-MPI [23] parallelizes

both phases of the computation using MPI. Sequence pairs
are aggregated into small batches that are sent to nodes as
they become available, thus preventing workers from idling.
In our experiment we compute the multiple alignment of 600
synthetically generated peptide sequences with a length of
one thousand amino acids each.

4.2.3 MrBayes
MrBayes [21] builds phylogenetic trees showing evolu-
tionary relationships between species across generations,
using Bayesian inference and Markov chain Monte-Carlo
(MCMC) processes. MrBayes uses MPI to distribute com-
putation across multiple nodes, although with a high degree
of synchronization, and to swap state between nodes. The
number of MCMC chains, probabilities, number of swaps,
and frequency of swaps are all parameters that govern the
degree of parallelism and synchronization. Our MrBayes
experiment builds the evolutionary tree of 30 different bac-
terium species based on gapped DNA data, tracking back
nine hundred generations and using up to 256 chains for the
MCMC processes.

4.2.4 VASP
VASP [31] is a package for performing ab initio quantum-
mechanical simulations, using different pseudopotentials
and plane wave basis sets. VASP is particularly suited to
inorganic chemistry analyses. MPI parallelization of VASP
involves partitioning a three-dimensional spatial grid into
bands. This maximizes communication between nodes per-
forming simulation of intra-band interactions, although syn-
chronization is still required for inter-band dynamics. Fur-
ther parallelization can be achieved by splitting the computa-
tion across plane wave coefficients. Our VASP test performs
an electronic optimization process on a hydrogen molecule.

4.2.5 Tachyon
Tachyon [29] is a standard ray-tracing based renderer. Ray
tracing is a technique that follows all rays of light in a
scene as they reflect upon the different surfaces, and per-
forms highly detailed renderings. Ray tracers like Tachyon
are highly amenable to parallelization, by partitioning the
rendering space into a grid and computing each grid partition
in a mostly independent fashion. We used Tachyon to render
a twenty-six thousand atom macro-molecule using ambient
occlusion lighting and eight anti-aliasing samples.

4.3 Results
In comparing a pre-allocated set of VMs with MPI daemons
already running on them against the SnowFlock variants, we
expected some overhead, due to the time taken for VMs to
be cloned and MPI connections to be established. As can be
seen in Figure 4, the level of this overhead varied from appli-
cation to application. In some cases, such as MrBayes, there
was a considerable extra cost, but in others, such as Tachyon,
the overhead was less noticeable. This was probably due to



the differences in the levels of interprocess communication
of the various applications. This indicates that the choice of a
hub-style architecture was probably overly-optimisitic and is
something that should be revisited. Given that SnowFlock’s
cluster instantiation time is of the order of a second [22],
it seems likely that it is the single master management pro-
cess which is causing the bottleneck. In cases where there
is a lot of MPI management traffic, the central management
process becomes a hot spot and must handle a lot of con-
nections. Consequently, for applications where there is not
much management activity, performance is better, and for
those where there is a lot, performance is worse. We also
note that for longer runs the proportion of the overhead tends
to be less, although its absolute value increases. We will ad-
dress these issues by adopting a fully-distributed architec-
ture for connection management that exploits SnowFlock’s
deterministic allocation of IP addresses to VMs. Allowing
more flexibility in the way MPI processes are allocated, e.g.
by not forcing an application process onto every processor,
could also be a useful enhancement that would permit better
tailoring of the environment to specific applications.
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Figure 4: Application Benchmarks. Bars show execution time.
Error bars show standard deviation. Five or more runs.

Although the SnowFlock-based applications did run
slower than the standard MPI ones, we demonstrated that
SnowFlock can be used successfully to enable easy paral-
lelization with MPI, especially when further modifications
to the MPICH library bring the performance overheads to a
more acceptable level. Given that no modification was re-
quired to the code of the MPI applications themselves, this
should make SnowFlock a realistic way of setting up MPI
computations in a cloud environment.

5. Future Work
Our SnowFlock implementation of MPI supports unmodi-
fied MPI applications. In this section we describe two exten-
sions to MPI that we will explore in future work.

5.1 Computation Resizing
With SnowFlock, a master can create multiple successive
sets of clones, and they are all able to communicate over the
same private virtual network. This enables a coordinator to
dynamically add more workers to a computation as needed.
This feature is already an integral part of other parallel com-
putation frameworks such as MapReduce [12]. For instance,
when spawning jobs over several hundred nodes, the likeli-
hood of failure of a given worker grows significantly. The
ability to add more workers to the computation allows for
replacement of failing workers. MPI implementations them-
selves do not provide fault tolerance; it is something that has
to be built into the application. See [19] for some discussion
on this topic.

Other instances when dynamic computation resizing are
useful involve inputs that are not known a priori. For in-
stance, data-driven computations may only be able to decide
the optimal number of workers after parsing some amount
of data. Internet services such as NCBI BLAST [28], or EBI
ClustalW2 [15] use parallel computation to respond to com-
plex user queries in interactive times (tens of seconds). A
burst in user requests will add pressure to the parallel sys-
tem that can be satisfied with the addition of more workers.
Finally, fluctuations in the availability of nodes in the un-
derlying cluster may present opportunities to add additional
workers to speed up a long-lived computation.

SnowFlock makes it extremely easy to resize the compu-
tation and add workers. However, this enhancement requires
careful adaptation of the MPI logic. APIs like MapReduce
can readily accommodate adding new workers because they
are targeted to tasks that are essentially embarrassingly par-
allel. There is very low or no coupling between the partic-
ipants in a computation: new members can thus be added
freely because they do not break the assumptions of, or have
dependencies with, other members. MPI is generally used
for more complex parallel computations that need to ex-
change state or synchronize during runtime, such as n-body
or molecular dynamics jobs. While SnowFlock makes new
workers with identical configuration instantaneously avail-
able, MPI programs will need adaptation to utilize this fea-
ture.

5.2 Read-only Shared Memory
MPI programs assume workers are executing on independent
nodes. Application programmers are thus burdened with ex-
plicitly pushing state to all workers. For example, the initial
stage in ClustalW-MPI has the worker with rank zero read-
ing all sequences and then pushing those sequences to all its
peers.

SnowFlock can greatly simplify this task. By providing
stateful cloning semantics, SnowFlock allows each worker
to automatically inherit the entire application state up to
the point of cloning. This works conceptually as a read-
only shared memory: all workers after cloning can read



application state from their address space with the guarantee
that the same state is visible to their peers. Application
programmers are thus freed from the concern of marshaling
and transferring input data and other state.

This paradigm can be combined with dynamic resizing
to enable new application structures. For instance, the first
stage of a computation can involve creating an initial set
of parallel workers. The workers automatically inherit the
input data and perform their task. Once finished, the workers
are killed and the footprint is reduced again to a single
VM. This VM can be checkpointed, prior to initiating a
second stage: checkpointing allows long-lived computations
to be recovered in the case of failure. In the second phase,
a different number of workers is spawned to operate over
the intermediate data, which they also inherit automatically.
Examples of such computations include map and reduce
phases, or ClustalW-MPI, which consists of separate phases
of pair-wise sequence comparison and multiple alignment
computation.

6. Related Work
A number of projects have explored the area of VM repli-
cation. In the original SnowFlock paper [22] we addressed
the topic of fast stateful VM replication, but we did not ad-
dress issues pertaining to integration with parallel APIs. The
Potemkin project [32] implements a honeypot spanning a
large IP address range. Honeypot machines are short-lived
lightweight VMs cloned from a static template in the same
machine with memory copy-on-write techniques. Potemkin
does not address parallel applications and does not fork mul-
tiple VMs to different hosts. Remus [10] provides instanta-
neous failover by keeping an up-to-date replica of a VM in a
separate host. Denali [33] dynamically multiplexes VMs that
execute user-provided code in a web-server, with a focus on
security and isolation.

Work focusing on multiplexing a set of VMs on a physi-
cal cluster has typically resorted to legacy techniques such as
migration [9] or suspend/resume, without providing the per-
formance capabilities or the convenient programming model
of SnowFlock. The term “virtual cluster” is used by many
projects [13, 16, 8] focusing on resource provisioning and
management.

OpenCirrus [27] is a framework designed to aid in sys-
tems development, and as such could be a useful environ-
ment in which to do further work on SnowFlock. EUCA-
LYPTUS [14] is a cloud management package that only al-
lows VM suspend and resume; it does not offer the VM
fork functionality that SnowFlock provides. MOAB [26] is a
high-level cluster management system that allows the moni-
toring and administration of certain aspects of a cluster, but
does not provide an application developer the control that
SnowFlock offers. Microsoft’s Azure [24] is a platform of-
fering similar services to Amazon’s EC2, and supports the
.Net [25] framework. SnowFlock’s flexibile computing foot-

print and ease of use may prove advantageous here. Com-
pared with Amazon’s EC2, SnowFlock offers the advantages
of more rapidly instantiated VMs and an easy-to-use API,
including removing the need for VM golden image creation.

The suitability of virtualization for MPI-based applica-
tions has been explored by Youseff et al. [34], who demon-
strated that MPI applications can run with minimal overhead
in Xen environments. We have endeavoured to go further, by
showing that it is possible to make MPI work in a cloud-
friendly manner, using the functionality of SnowFlock to
rapidly provide a virtual cluster, while maintaining reason-
able levels of performance.

Several other implementations of MPI exist beyond
MPICH, including Open MPI [17] and LAM MPI [6]. With
the expectation that only software changes should be re-
quired, it should be no more difficult to adapt these packages
to work within SnowFlock than it was MPICH. Other par-
allel programming frameworks include the Parallel Virtual
Machine (PVM) [18], which provides a message passing
model very similar to that of MPI; OpenMP [7], which tar-
gets parallel computing in a shared memory multiprocessor;
and MapReduce. MapReduce [12] is particularly relevant
today as it targets the emergent class of large parallel data-
intensive computations. These embarrassingly parallel prob-
lems arise in a number of areas spanning bioinformatics,
quantitative finance, search, machine learning, etc. We be-
lieve that the approach presented here can be equally applied
to interfaces such as MapReduce or PVM.

7. Conclusions
The offer of computing infrastructure for rent as a com-
modity enables research groups to leverage processing re-
sources otherwise far outside their financial and logistic ca-
pacity. MPI is a highly popular abstraction used for program-
ming and managing the execution of parallel jobs apt for
deployment on large rented infrastructure. With SnowFlock,
MPI programs can be run in virtualization-based commodity
computing environments, minimizing configuration burden
and maximizing investment. SnowFlock minimizes configu-
ration burden because it allows the programmer to configure
and interact with a single VM. By providing stateful cloning
of the master VM, SnowFlock replicates the user environ-
ment on-the-fly to dozens of clones, and releases program-
mers from managing multiple hosts. By combining Snow-
Flock with MPI, we allow users to leverage the full benefits
of the cloud while providing a familiar usage model. Snow-
Flock maximizes investment because no idle VMs are ever
needed; MPI programs expand in sub-second time their pro-
cessing footprint to the number of VMs needed, and shrink
their footprint equally fast.

We believe the benefits of SnowFlock extend beyond
the usual MPI practices into new application models. In
the future, with some further work, SnowFlock can enable
modified MPI applications to instantaneously resize their



footprint to involve more processors, compute more data,
serve more requests, or replace failing workers dynamically.
SnowFlock provides a mixed model of read-only shared
memory and message passing, in which application pro-
grammers need not worry about explicitly pushing applica-
tion state as this is automatically available to all clones af-
ter replication. We intend to explore these new avenues for
MPI-based parallel programming in our future work.
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